Enzymes
Function and structure
Enzymes are very efficient catalysts for biochemical reactions. They speed
up reactions by providing an alternative reaction pathway of lower activation
energy.Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium. Most chemical catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast enzymes are usually highly selective, catalysing specific reactions only. This specificity is due to the shapes of the enzyme molecules. Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature sensitive. Cofactors may be:
How enzymes work
For two molecules to react they must collide with one another. They must
collide in the right direction (orientation) and with sufficient energy.
Sufficient energy means that between them they have enough energy to overcome
the energy barrier to reaction. This is called the activation energy.Enzymes have an active site. This is part of the molecule that has just the right shape and functional groups to bind to one of the reacting molecules. The reacting molecule that binds to the enzyme is called the substrate. An enzyme-catalysed reaction takes a different 'route'. The enzyme and substrate form a reaction intermediate. Its formation has a lower activation energy than the reaction between reactants without a catalyst. A simplified picture
Lock and key hypothesis
This is the simplest model to represent how an enzyme works. The substrate
simply fits into the active site to form a reaction intermediate.
Induced fit hypothesis
In this model the enzyme molecule changes shape as the substrate molecules
gets close. The change in shape is 'induced' by the approaching substrate
molecule. This more sophisticated model relies on the fact that molecules are
flexible because single covalent bonds are free to rotate.
Factors affecting catalytic activity of enzymes
Temperature
Above this temperature the enzyme structure begins to break down (denature) since at higher temperatures intra- and intermolecular bonds are broken as the enzyme molecules gain even more kinetic energy.
pH
Concentration of enzyme and substrate
For a given enzyme concentration, the rate of reaction increases with increasing substrate concentration up to a point, above which any further increase in substrate concentration produces no significant change in reaction rate. This is because the active sites of the enzyme molecules at any given moment are virtually saturated with substrate. The enzyme/substrate complex has to dissociate before the active sites are free to accommodate more substrate. (See graph) Provided that the substrate concentration is high and that temperature and pH are kept constant, the rate of reaction is proportional to the enzyme concentration. (See graph)
Inhibition of enzyme activity
Some substances reduce or even stop the catalytic activity of enzymes in
biochemical reactions. They block or distort the active site. These chemicals
are called inhibitors, because they inhibit reaction.Inhibitors that occupy the active site and prevent a substrate molecule from binding to the enzyme are said to be active site-directed (or competitive, as they 'compete' with the substrate for the active site). Inhibitors that attach to other parts of the enzyme molecule, perhaps distorting its shape, are said to be non-active site-directed (or non competitive).
Immobilized enzymes
Enzymes are widely used commercially, for example in the detergent, food
and brewing industries. Protease enzymes are used in 'biological' washing
powders to speed up the breakdown of proteins in stains like blood and egg. Pectinase
is used to produce and clarify fruit juices. Problems using enzymes
commercially include:
|
Minggu, 19 Juni 2016
enzymes 2
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar