Minggu, 19 Juni 2016

Enzyme

Enzymes

Function and structure

Enzymes are very efficient catalysts for biochemical reactions. They speed up reactions by providing an alternative reaction pathway of lower activation energy.

Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium.
Most chemical catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast enzymes are usually highly selective, catalysing specific reactions only. This specificity is due to the shapes of the enzyme molecules.
Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature sensitive.
Cofactors may be:
  • organic groups that are permanently bound to the enzyme (prosthetic groups)
  • cations - positively charged metal ions (activators), which temporarily bind to the active site of the enzyme, giving an intense positive charge to the enzyme's protein
  • organic molecules, usually vitamins or made from vitamins (coenzymes), which are not permanently bound to the enzyme molecule, but combine with the enzyme-substrate complex temporarily.

How enzymes work

For two molecules to react they must collide with one another. They must collide in the right direction (orientation) and with sufficient energy. Sufficient energy means that between them they have enough energy to overcome the energy barrier to reaction. This is called the activation energy.

Enzymes have an active site. This is part of the molecule that has just the right shape and functional groups to bind to one of the reacting molecules. The reacting molecule that binds to the enzyme is called the substrate.
An enzyme-catalysed reaction takes a different 'route'. The enzyme and substrate form a reaction intermediate. Its formation has a lower activation energy than the reaction between reactants without a catalyst.
A simplified picture
Route A
reactant 1 + reactant 2  Description: --> product


Route B
reactant 1 + enzyme  Description: -->  intermediate

intermediate + reactant 2  Description: -->  product + enzyme
So the enzyme is used to form a reaction intermediate, but when this reacts with another reactant the enzyme reforms.

Lock and key hypothesis

This is the simplest model to represent how an enzyme works. The substrate simply fits into the active site to form a reaction intermediate.

Induced fit hypothesis

In this model the enzyme molecule changes shape as the substrate molecules gets close. The change in shape is 'induced' by the approaching substrate molecule. This more sophisticated model relies on the fact that molecules are flexible because single covalent bonds are free to rotate.

Tidak ada komentar:

Posting Komentar