Lake toba is in Indonesia exactly in Samosir,North Sumatra. Its an vulcanic errupted lake. One of the famous and wonderful place in Indonesia because its known as legendary place. Here is a picture that i was take.
If night is coming the weather is so cold. I like this place so much for refreshing. This is recommended place for you.
medical student
Minggu, 19 Juni 2016
Med Ethics
DILEMA ETIS DALAM PELAYANAN KESEHATAN 1.Alat terbatas à siapa hidup ,siapa
dikorbankan? 2.Meneruskan life support “Resusitasi” 3.Terapi ilmiah melawan
terapi tradisional. 4.Merawat pasien AIDS 5.Euthanasia –Aktif dan Pasif-
6.Kehamilan tidak dikehendaki /Aborsi Provocatus TeurapeticAbrosi Teurapetik
Criminal? 7.Perawatan yang mahal 8.Penggunaan manusia/hewan sebagai objek riset
DILEMA ETIS BIOTECHNOLOGY 1.TRANPLANTASI
ORGAN—Autograft,Allograft,Isograft,Xenograft 2.EMBRYO CLONING 3.REKAYASA
GENETIKA 4.FERTILISASI (INVITRO)
Teori ETIKA dalam aspek kesehatan:
1. Teori Etika Klasik
a.Teleologi benar tidaknya suatu tindakan
tergantung pada akibat yang dihasilkan b.Utilitarianisme jika hasil dari perbuatan baik bagi
banyak orang . 2.Teori Etika Nilai [Max Scheler] --Bahwa hal itu etis jika niat
untuk melakukan suatu perbuatan dirasakan baik- è
Terkandung nilai kejujuran, nilai otentik, kesediaan untuk bertanggungjawab,
kemandirian moral, keberanian moral— 3. Teori Etika Kontemporer; a.Budi pekerti
yang luhur : Compassion (empati), Discernment (pandangan yang tepat dalam
mengambil keputusan), Dapat dipercaya, Berintegritas moral tinggib.Sikap
mengasuh,mengasihi. c.Menghormati otonomi pasien
Garis Orientasi Tubuh dan Region Abdominal
Garis Orientasi Tubuh dan Region Abdominal
Garis Orientasi Tubuh Manusia (Linea)
- Linea
mediana : garis tengah tubuh (anterior dan Posterior)
- Linea
Sternalis : garis yang memebentang di sepanjang os. Sternum (dextra dan
sinistra)
- Linea
midclavicularis : garis yang membentang tepat memotong di tengah os.
Clavicula (dextra dan sinistra)
- Linea
parasternalis : garis yang membentang diantara linea sternalis dan linea
midclavicularis (dextra dan sinistra)
- Linea
axillaris anterior : garis yang membentang di sisi depan ketiak
- Linea axillaris media : garis yang membentang di
sisi tengah ketiak
- Linea
axillaris posterior : garis yang membentang di sisi belakang ketiak
- Linea
vertebralis : garis yang membentang di tengah vertebrae (sejajar dengan
linea median posterior)
- Linea
scapularis : garis yang membentang di tengah os. Scapula
- Linea
paravertebralis : garis yang membentang diantara linea scapularis dan
linea vertebralis
gambar 1. garis orientasi tubuh
|
Pembagian
Regio Abdomen
Ada beberapa
cara untuk menentukan permukaan dinding perut dalam beberapa regional
1. Dalam bentuk kuadran
Dalam bentuk
kuadran merupakan bentuk garis besar dan sederhana. Penentuan kuadran ini
dengan menarik garis (horizontal dan vertikal) melalui umbilikus. Dengan cara
ini dinding abdomen terbagi atas 4 daerah yang sering disebut :
- Kuadran kanan atas
- Kuadran kiri atas
- Kuadran kanan bawah
- Kuadran kiri bawah
gambar 2. Kuadran Abdominalis
|
Kepentingan
pembagian ini yaitu untuk menyederhakan penulisan laporan, misalnya untuk kepentingan
konsultasi atau pemeriksaan kelainan yang mencakup daerah yang cukup jelas.
Berikut
gambaran secara besar tentang organ yang terdapat pada kuadran-kuadran.
Kuadran Kanan Atas
|
Kuadran Kiri Atas
|
Hati, kantung empedu, paru, esofagus
|
Hati, jantung, esofagus, paru, pankreas, limfa,
lambung
|
Kuadran Kanan Bawah
|
Kuadran Kiri Bawah
|
Usus 12 jari (duo denum), usus besar, usus kecil,
kandung kemih, rektum, testis, anus
|
Anus, rektum, testis, ginjal, usus kecil, usus besar
|
tabel 1. Gambaran Organ dalam Kuadran
2. Dalam
bentuk regio
Regio
digunakan untuk pemeriksaan yang lebih rinci atau lebih spesifik, yaitu dengan
menarik dua garis sejajar dengan garis median dan garis transversal yang
menghubungkan dua titik paling bawah dari arkus kosta dan satu lagi yang
menghubungkan kedua spina iliaka anterior superior (SIAS).
Bedasarkan
pembagian yang lebih rinci tersebut permukaan depan abdomen terbagi menjadi 9
regio:
- Regio
hypocondriaca dextra
- Regio
epigastrica
- Regio
hypocondriaca sinistra
- Regio
abdominal lateralis dextra
- Regio
umbilicalis
- Regio
abdominal lateralis sinistra
- Regio
inguinalis dextra
- Regio
pubica (hypogastrium)
- Regio
inguinalis sinistra
gambar 4. Regio Abdominalis
|
Kepentingan
pembagian ini, yaitu bila kita meminta pasien untuk menunjukan dengan tepat
lokasi rasa nyeri serta melakukan deskripsi perjalanan rasa nyeri tersebut.
Dalam hal ini sangat penting untuk membuat peta lokasi rasa nyeri beserta
perjalanannya, sebab sudah diketahui karakteristik dan lokasi nyeri akibat
kelainan masing-masing organ intra abdominal berdasarkan hubungan persarafan
viseral dan somatik.
Secara garis
besar organ-organ dalam abdomen dapat diproyeksikan pada permukaan abdomen
dalam bentuk regio, yaitu antara lain:
- Hati
atau hepar berada di regio hypocondriaca dextra, epigastrica dan sedikit
ke hypocondriaca sinistra.
- Lambung
berada di regio epigastrium.
- Limpa
berkedudukan di regio hypocondrium kiri.
- Kandung
empedu atau vesika felea sering kali berada pada perbatasan regio
hypocondrium kanan dan epigastica.
- Kandung
kemih yang penuh dan uterus pada orang hamil dapat teraba di regio
hypogastrium.
- Apendiks
berada di daerah antara regio inguinalis dextra, abdominalis lateral
kanan, dan bagian bawah regio umbilicalis.
enzymes 2
Enzymes
Function and structure
Enzymes are very efficient catalysts for biochemical reactions. They speed
up reactions by providing an alternative reaction pathway of lower activation
energy.Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium. Most chemical catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast enzymes are usually highly selective, catalysing specific reactions only. This specificity is due to the shapes of the enzyme molecules. Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature sensitive. Cofactors may be:
How enzymes work
For two molecules to react they must collide with one another. They must
collide in the right direction (orientation) and with sufficient energy.
Sufficient energy means that between them they have enough energy to overcome
the energy barrier to reaction. This is called the activation energy.Enzymes have an active site. This is part of the molecule that has just the right shape and functional groups to bind to one of the reacting molecules. The reacting molecule that binds to the enzyme is called the substrate. An enzyme-catalysed reaction takes a different 'route'. The enzyme and substrate form a reaction intermediate. Its formation has a lower activation energy than the reaction between reactants without a catalyst. A simplified picture
Lock and key hypothesis
This is the simplest model to represent how an enzyme works. The substrate
simply fits into the active site to form a reaction intermediate.
Induced fit hypothesis
In this model the enzyme molecule changes shape as the substrate molecules
gets close. The change in shape is 'induced' by the approaching substrate
molecule. This more sophisticated model relies on the fact that molecules are
flexible because single covalent bonds are free to rotate.
Factors affecting catalytic activity of enzymes
Temperature
Above this temperature the enzyme structure begins to break down (denature) since at higher temperatures intra- and intermolecular bonds are broken as the enzyme molecules gain even more kinetic energy.
pH
Concentration of enzyme and substrate
For a given enzyme concentration, the rate of reaction increases with increasing substrate concentration up to a point, above which any further increase in substrate concentration produces no significant change in reaction rate. This is because the active sites of the enzyme molecules at any given moment are virtually saturated with substrate. The enzyme/substrate complex has to dissociate before the active sites are free to accommodate more substrate. (See graph) Provided that the substrate concentration is high and that temperature and pH are kept constant, the rate of reaction is proportional to the enzyme concentration. (See graph)
Inhibition of enzyme activity
Some substances reduce or even stop the catalytic activity of enzymes in
biochemical reactions. They block or distort the active site. These chemicals
are called inhibitors, because they inhibit reaction.Inhibitors that occupy the active site and prevent a substrate molecule from binding to the enzyme are said to be active site-directed (or competitive, as they 'compete' with the substrate for the active site). Inhibitors that attach to other parts of the enzyme molecule, perhaps distorting its shape, are said to be non-active site-directed (or non competitive).
Immobilized enzymes
Enzymes are widely used commercially, for example in the detergent, food
and brewing industries. Protease enzymes are used in 'biological' washing
powders to speed up the breakdown of proteins in stains like blood and egg. Pectinase
is used to produce and clarify fruit juices. Problems using enzymes
commercially include:
|
Enzyme
Enzymes
Function and structure
Enzymes are very efficient catalysts for biochemical reactions. They speed up
reactions by providing an alternative reaction pathway of lower activation
energy.Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium.
Most chemical catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast enzymes are usually highly selective, catalysing specific reactions only. This specificity is due to the shapes of the enzyme molecules.
Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature sensitive.
Cofactors may be:
- organic
groups that are permanently bound to the enzyme (prosthetic groups)
- cations
- positively charged metal ions (activators), which temporarily
bind to the active site of the enzyme, giving an intense positive charge
to the enzyme's protein
- organic
molecules, usually vitamins or made from vitamins (coenzymes),
which are not permanently bound to the enzyme molecule, but combine with
the enzyme-substrate complex temporarily.
How enzymes work
For two molecules to react they must collide with one another. They must
collide in the right direction (orientation) and with sufficient energy.
Sufficient energy means that between them they have enough energy to overcome
the energy barrier to reaction. This is called the activation energy.Enzymes have an active site. This is part of the molecule that has just the right shape and functional groups to bind to one of the reacting molecules. The reacting molecule that binds to the enzyme is called the substrate.
An enzyme-catalysed reaction takes a different 'route'. The enzyme and substrate form a reaction intermediate. Its formation has a lower activation energy than the reaction between reactants without a catalyst.
A simplified picture
Route A
|
reactant 1 + reactant 2
product
|
|
|
Route B
|
reactant 1 + enzyme intermediate
|
|
intermediate + reactant 2 product
+ enzyme
|
Lock and key hypothesis
This is the simplest model to represent how an enzyme works. The substrate
simply fits into the active site to form a reaction intermediate.
Induced fit hypothesis
In this model the enzyme molecule changes shape as the
substrate molecules gets close. The change in shape is 'induced' by the
approaching substrate molecule. This more sophisticated model relies on the
fact that molecules are flexible because single covalent bonds are free to
rotate.
Continue
Systematic Anatomicum
( Regional Anatomicum )
( Regional Anatomicum )
Anatomi yang
menguraikan struktur yang menyusun system organ di masing-masing regio ( bagian
) tubuh manusia serta proyeksi nya terhadap struktur
region lain.
Pembagian
Regio Tubuh Manusia
Secara garis
besar tubuh manusia terbagi dalam 7 (tujuh) region dan masing-masing dibagi lagi dalam subs
region yaitu :
1. Regio Capitis, Capitis ( =
kepala ) terdiri dari beberapa Subs- Regio
a.l :
a. Anterior ( Facei ) :
~ Regio frontalis
~ Regio Orbitalis, infraorbitalis,Nasalis
~ Regio Zygomaticum, Buccalis
~ Regio Oralis
~ Regio Mentalis
b. Lateralis :
~ Regio Temporalis, Parietalis
c. Posterior :
~ Occipitalis
2. Regio Colli terdiri dari beberapa subs regio :
a. Regio Cervicalis Anterior :
~ Submentale
~ Submandibulare
~ Caroticum
~ Omotracheale
b. Regio Sternocleidomastoideus
c. Regio Cervicalis Lateralis :
~ Cervicalis Lateralis
~ Omoclaviculare ( Fossa Supraclaviculare )
d. Regio cervicalis Posterior
3. Regio Thorax terdiri atas beberapa subsregio. a.l :
a. Anterior :
~ Regio Pectoralis
~ Regio Parasternalis
~ Regio Mammaria
~ Regio Inframammaria
b. Lateralis :
~ Regio Axillaris
c. Posterior :
~ Regio Supra &
Infra scapularis
~ Regio Scapularis
~ Regio Vertebralis
pars Thoracica
4. Regio Abdomen terdiri dari beberapa subs region a.l. :
a. Anterior :
~ Regio Hypochondriaca
Dextra & Sinistra
~ Regio Epigastricum
~ Regio Periumbilicalis
~ Regio Umbilicalis
b. Posterior :
~ Regio Lumbalis
Dextra & Sinistra
~ Regio Vertebralis
Pars Abdominalis
5. Regio Pelvic terdiri atas beberapa
subsregio a.l :
a. Anterior :
~ Regio Hypogastricum
~ Regio Pubogenitale
~ Regio Inguinale
b. Posterior :
~ Regio Glutealis
~ Regio Sacralis
~ Regio Analis
6. Regio Extremitas Superior terdiri atas beberapa subsegio a.l :
a. Regio Clavipectoralis
b. Regio Deltoideus
c. Regio Brachii Anterior
d. Regio Brachii Lateralis
e. Regio Brachii Medialis
f. Regio Cubitalis Anterior & Posterior
g. Regio Antebrachii Volaris
h. Regio Antebrachii Dorsalis
i. Regio Carpalis Anterior & Dorsalis
j. Regio Palmaris & Dorsum Manus
7. Regio Extremitas Inferior terdiri ats beberapa subs region a.l :
a. Regio Femoralis
Anterior & Posterior
b. Regio Genu Anterior &
Posterior
c. Regio Cruris :
~ Regio Tibialis
Anterior & Posterior
~ Regio Pes
( Pedis ) :
- Reg. Malleolaris Lateral & Medial
- Reg. Calcaneus
- Reg. Dorsalis Pedis
- Reg. Plantaris Pedis .
Arah gerakan
A. Axis Rotasio pada bidang
sagital akan menghasilkan gerakkan :
1.
Anteversio ( Flexio
) : gerakan extremitas tubuh flexi
kearah anterior
2.
Retroversio (Extensio ) : gerakan extremitas
tubuh flexi kearah posterior
3.
Abductio
: gerakan extremitas tubuh kearah lateral ( menjauh ) dari linea
mediana
4.
Adductio
: gerakan extremitas tubuh kearah medial ( mendekati ) linea mediana
5.
Pronatio
: gerakan extremitas tubuh memutar shg palmar manus menghadap ke bumi
6.
Supinatio
: gerakan extermitas tubuh memutar sehingga dorsum manus menghadap ke
Bumi
B. Axis rotasio pada bidang longitudinal
menghasilkan gerakan :
1.
Rotasio
eksterna
: gerakan extremitas tubuh berputar kea rah lateral ( keluar ) tubuh
2.
Rotasio
interna
: gerakan extremitas tubuh berputar kearah medial ( kedalam ) tubuh
C. Axis rotasio pada bidang
transversal menghasilkan gerakan :
1.
Ekstensio
: gerakan extremitas tubuh membentuk sudut 180 0 (meluruskan sendi )
2.
Fleksi
: gerakan extremitas tubuh membentuk sudut 90 0 ( membengkokkan
sendi )
Langganan:
Postingan (Atom)