Minggu, 19 Juni 2016

Lake Toba

Lake toba is in Indonesia exactly in Samosir,North Sumatra. Its an vulcanic errupted lake. One of the famous and wonderful place in Indonesia because its known as legendary place. Here is a picture that i was take.
 If night is coming the weather is so cold. I like this place so much for refreshing. This is recommended place for you.

Med Ethics

DILEMA ETIS DALAM PELAYANAN KESEHATAN 1.Alat terbatas à siapa hidup ,siapa dikorbankan? 2.Meneruskan life support “Resusitasi” 3.Terapi ilmiah melawan terapi tradisional. 4.Merawat pasien AIDS 5.Euthanasia –Aktif dan Pasif- 6.Kehamilan tidak dikehendaki /Aborsi Provocatus TeurapeticAbrosi Teurapetik Criminal? 7.Perawatan yang mahal 8.Penggunaan manusia/hewan sebagai objek riset
DILEMA ETIS BIOTECHNOLOGY 1.TRANPLANTASI ORGAN—Autograft,Allograft,Isograft,Xenograft 2.EMBRYO CLONING 3.REKAYASA GENETIKA 4.FERTILISASI (INVITRO)

Teori ETIKA dalam aspek kesehatan:
1. Teori Etika Klasik

 a.Teleologi             benar tidaknya suatu tindakan tergantung pada akibat yang dihasilkan b.Utilitarianisme          jika hasil dari perbuatan baik bagi banyak orang . 2.Teori Etika Nilai [Max Scheler] --Bahwa hal itu etis jika niat untuk melakukan suatu perbuatan dirasakan baik- è Terkandung nilai kejujuran, nilai otentik, kesediaan untuk bertanggungjawab, kemandirian moral, keberanian moral— 3. Teori Etika Kontemporer; a.Budi pekerti yang luhur : Compassion (empati), Discernment (pandangan yang tepat dalam mengambil keputusan), Dapat dipercaya, Berintegritas moral tinggib.Sikap mengasuh,mengasihi. c.Menghormati otonomi pasien

Garis Orientasi Tubuh dan Region Abdominal

Garis Orientasi Tubuh dan Region Abdominal
Garis Orientasi Tubuh Manusia (Linea)
  • Linea mediana : garis tengah tubuh (anterior dan Posterior) 
  • Linea Sternalis : garis yang memebentang di sepanjang os. Sternum (dextra dan sinistra) 
  • Linea midclavicularis : garis yang membentang tepat memotong di tengah os. Clavicula (dextra dan sinistra) 
  • Linea parasternalis : garis yang membentang diantara linea sternalis dan linea midclavicularis (dextra dan sinistra) 
  • Linea axillaris anterior : garis yang membentang di sisi depan ketiak
  • Linea axillaris media : garis yang membentang di sisi tengah ketiak 
  • Linea axillaris posterior : garis yang membentang di sisi belakang ketiak 
  • Linea vertebralis : garis yang membentang di tengah vertebrae (sejajar dengan linea median posterior) 
  • Linea scapularis : garis yang membentang di tengah os. Scapula 
  • Linea paravertebralis : garis yang membentang diantara linea scapularis dan linea vertebralis
Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjwnl0pGfSnJVk_houOjLLDYoQ6wGleopXjr5DkgvFxQvSt5BVBK61HMkd310GVtI0zPX9SnEMjBzdQ19fOitHA7Y9IKN-zhzqD4bEmS2HtbWQb1xEa5pr1wlX9czQ1sMmEYhxtg_BFdjCd/s320/Garis+Orientasi+Tubuh.jpg
gambar 1. garis orientasi tubuh

Pembagian Regio Abdomen
Ada beberapa cara untuk menentukan permukaan dinding perut dalam beberapa regional

1.  Dalam bentuk kuadran

Dalam bentuk kuadran merupakan bentuk garis besar dan sederhana. Penentuan kuadran ini dengan menarik garis (horizontal dan vertikal) melalui umbilikus. Dengan cara ini dinding abdomen terbagi atas 4 daerah yang sering disebut :
  1. Kuadran kanan atas
  2. Kuadran kiri atas
  3. Kuadran kanan bawah
  4. Kuadran kiri bawah
Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjQInxNP1ZhodBuvor71xTns-nlvYt9JXjfho7JjvgWbGguvFttn5mFT4Lw5G2QVlOIw2AzH0tvvAAB_83nwTINbrYJfYB95CcNK0r1ci1t9LNhzN6vqpC86Zmzq40PofVXeRk70704e7Us/s1600/Kuadran+Abdomen.png
gambar 2. Kuadran Abdominalis

Kepentingan pembagian ini yaitu untuk menyederhakan penulisan laporan, misalnya untuk kepentingan konsultasi atau pemeriksaan kelainan yang mencakup daerah yang cukup jelas.

Berikut gambaran secara besar tentang organ yang terdapat pada kuadran-kuadran.
Kuadran Kanan Atas
Kuadran Kiri Atas
Hati, kantung empedu, paru, esofagus
Hati, jantung, esofagus, paru, pankreas, limfa, lambung
Kuadran Kanan Bawah
Kuadran Kiri Bawah
Usus 12 jari (duo denum), usus besar, usus kecil, kandung kemih, rektum, testis, anus
Anus, rektum, testis, ginjal, usus kecil, usus besar
tabel 1. Gambaran Organ dalam Kuadran

2. Dalam bentuk regio

Regio digunakan untuk pemeriksaan yang lebih rinci atau lebih spesifik, yaitu dengan menarik dua garis sejajar dengan garis median dan garis transversal yang menghubungkan dua titik paling bawah dari arkus kosta dan satu lagi yang menghubungkan kedua spina iliaka anterior superior (SIAS).

Bedasarkan pembagian yang lebih rinci tersebut permukaan depan abdomen terbagi menjadi 9 regio:
  1. Regio hypocondriaca dextra
  2. Regio epigastrica
  3. Regio hypocondriaca sinistra
  4. Regio abdominal lateralis dextra
  5. Regio umbilicalis
  6. Regio abdominal lateralis sinistra
  7. Regio inguinalis dextra
  8. Regio pubica (hypogastrium)
  9. Regio inguinalis sinistra
Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhRD6PXJUhcahZAlidJkFpiSLE1mI72KsgOqiISMbU7Sr5phdPj4cEIvMnoly5h_v_ktbckTaAO2pVHCVLv4XC18k2CWICEjO6qSxAKGp0iA01G8JNLOBdgUNt71hocnxg9SVT7sozU8rHp/s1600/Regio+Abdominalis.png
gambar 4. Regio Abdominalis

Kepentingan pembagian ini, yaitu bila kita meminta pasien untuk menunjukan dengan tepat lokasi rasa nyeri serta melakukan deskripsi perjalanan rasa nyeri tersebut. Dalam hal ini sangat penting untuk membuat peta lokasi rasa nyeri beserta perjalanannya, sebab sudah diketahui karakteristik dan lokasi nyeri akibat kelainan masing-masing organ intra abdominal berdasarkan hubungan persarafan viseral dan somatik.

Secara garis besar organ-organ dalam abdomen dapat diproyeksikan pada permukaan abdomen dalam bentuk regio, yaitu antara lain:
  • Hati atau hepar berada di regio hypocondriaca dextra, epigastrica dan sedikit ke hypocondriaca sinistra. 
  • Lambung berada di regio epigastrium. 
  • Limpa berkedudukan di regio hypocondrium kiri. 
  • Kandung empedu atau vesika felea sering kali berada pada perbatasan regio hypocondrium kanan dan epigastica. 
  • Kandung kemih yang penuh dan uterus pada orang hamil dapat teraba di regio hypogastrium. 
  • Apendiks berada di daerah antara regio inguinalis dextra, abdominalis lateral kanan, dan bagian bawah regio umbilicalis.


enzymes 2

Enzymes

Function and structure

Enzymes are very efficient catalysts for biochemical reactions. They speed up reactions by providing an alternative reaction pathway of lower activation energy.

Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium.
Most chemical catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast enzymes are usually highly selective, catalysing specific reactions only. This specificity is due to the shapes of the enzyme molecules.
Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature sensitive.
Cofactors may be:
  • organic groups that are permanently bound to the enzyme (prosthetic groups)
  • cations - positively charged metal ions (activators), which temporarily bind to the active site of the enzyme, giving an intense positive charge to the enzyme's protein
  • organic molecules, usually vitamins or made from vitamins (coenzymes), which are not permanently bound to the enzyme molecule, but combine with the enzyme-substrate complex temporarily.

How enzymes work

For two molecules to react they must collide with one another. They must collide in the right direction (orientation) and with sufficient energy. Sufficient energy means that between them they have enough energy to overcome the energy barrier to reaction. This is called the activation energy.

Enzymes have an active site. This is part of the molecule that has just the right shape and functional groups to bind to one of the reacting molecules. The reacting molecule that binds to the enzyme is called the substrate.
An enzyme-catalysed reaction takes a different 'route'. The enzyme and substrate form a reaction intermediate. Its formation has a lower activation energy than the reaction between reactants without a catalyst.
A simplified picture
Route A
reactant 1 + reactant 2  Description: --> product


Route B
reactant 1 + enzyme  Description: -->  intermediate

intermediate + reactant 2  Description: -->  product + enzyme
So the enzyme is used to form a reaction intermediate, but when this reacts with another reactant the enzyme reforms.

Lock and key hypothesis

This is the simplest model to represent how an enzyme works. The substrate simply fits into the active site to form a reaction intermediate.
Description: Enzyme and Substrate fit together to make enzyme-substrate complex

Induced fit hypothesis

In this model the enzyme molecule changes shape as the substrate molecules gets close. The change in shape is 'induced' by the approaching substrate molecule. This more sophisticated model relies on the fact that molecules are flexible because single covalent bonds are free to rotate.

Factors affecting catalytic activity of enzymes

Temperature

Description: Graph of enzyme activity verses temperature
As the temperature rises, reacting molecules have more and more kinetic energy. This increases the chances of a successful collision and so the rate increases. There is a certain temperature at which an enzyme's catalytic activity is at its greatest (see graph). This optimal temperature is usually around human body temperature (37.5 oC) for the enzymes in human cells.
Above this temperature the enzyme structure begins to break down (denature) since at higher temperatures intra- and intermolecular bonds are broken as the enzyme molecules gain even more kinetic energy.

pH

Description: Graph of enzyme activity verses pH
Each enzyme works within quite a small pH range. There is a pH at which its activity is greatest (the optimal pH). This is because changes in pH can make and break intra- and intermolecular bonds, changing the shape of the enzyme and, therefore, its effectiveness.

Concentration of enzyme and substrate

Description: Graph of enzyme activity verses enzyme concentration           Description: Graph of enzyme activity verses substrate concentration
The rate of an enzyme-catalysed reaction depends on the concentrations of enzyme and substrate. As the concentration of either is increased the rate of reaction increases (see graphs).
For a given enzyme concentration, the rate of reaction increases with increasing substrate concentration up to a point, above which any further increase in substrate concentration produces no significant change in reaction rate. This is because the active sites of the enzyme molecules at any given moment are virtually saturated with substrate. The enzyme/substrate complex has to dissociate before the active sites are free to accommodate more substrate. (See graph)
Provided that the substrate concentration is high and that temperature and pH are kept constant, the rate of reaction is proportional to the enzyme concentration. (See graph)

Inhibition of enzyme activity

Some substances reduce or even stop the catalytic activity of enzymes in biochemical reactions. They block or distort the active site. These chemicals are called inhibitors, because they inhibit reaction.
Inhibitors that occupy the active site and prevent a substrate molecule from binding to the enzyme are said to be active site-directed (or competitive, as they 'compete' with the substrate for the active site).
Inhibitors that attach to other parts of the enzyme molecule, perhaps distorting its shape, are said to be non-active site-directed (or non competitive).

Immobilized enzymes

Enzymes are widely used commercially, for example in the detergent, food and brewing industries. Protease enzymes are used in 'biological' washing powders to speed up the breakdown of proteins in stains like blood and egg. Pectinase is used to produce and clarify fruit juices. Problems using enzymes commercially include:
  • they are water soluble which makes them hard to recover
  • some products can inhibit the enzyme activity (feedback inhibition)
Enzymes can be immobilized by fixing them to a solid surface. This has a number of commercial advantages:
  • the enzyme is easily removed
  • the enzyme can be packed into columns and used over a long period
  • speedy separation of products reduces feedback inhibition
  • thermal stability is increased allowing higher temperatures to be used
  • higher operating temperatures increase rate of reaction
There are four principal methods of immobilization currently in use:
  • covalent bonding to a solid support
  • adsorption onto an insoluble substance
  • entrapment within a gel
  • encapsulation behind a selectively permeable membrane

Enzyme

Enzymes

Function and structure

Enzymes are very efficient catalysts for biochemical reactions. They speed up reactions by providing an alternative reaction pathway of lower activation energy.

Like all catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction pathway. But they do not undergo permanent changes and so remain unchanged at the end of the reaction. They can only alter the rate of reaction, not the position of the equilibrium.
Most chemical catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast enzymes are usually highly selective, catalysing specific reactions only. This specificity is due to the shapes of the enzyme molecules.
Many enzymes consist of a protein and a non-protein (called the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH and temperature sensitive.
Cofactors may be:
  • organic groups that are permanently bound to the enzyme (prosthetic groups)
  • cations - positively charged metal ions (activators), which temporarily bind to the active site of the enzyme, giving an intense positive charge to the enzyme's protein
  • organic molecules, usually vitamins or made from vitamins (coenzymes), which are not permanently bound to the enzyme molecule, but combine with the enzyme-substrate complex temporarily.

How enzymes work

For two molecules to react they must collide with one another. They must collide in the right direction (orientation) and with sufficient energy. Sufficient energy means that between them they have enough energy to overcome the energy barrier to reaction. This is called the activation energy.

Enzymes have an active site. This is part of the molecule that has just the right shape and functional groups to bind to one of the reacting molecules. The reacting molecule that binds to the enzyme is called the substrate.
An enzyme-catalysed reaction takes a different 'route'. The enzyme and substrate form a reaction intermediate. Its formation has a lower activation energy than the reaction between reactants without a catalyst.
A simplified picture
Route A
reactant 1 + reactant 2  Description: --> product


Route B
reactant 1 + enzyme  Description: -->  intermediate

intermediate + reactant 2  Description: -->  product + enzyme
So the enzyme is used to form a reaction intermediate, but when this reacts with another reactant the enzyme reforms.

Lock and key hypothesis

This is the simplest model to represent how an enzyme works. The substrate simply fits into the active site to form a reaction intermediate.

Induced fit hypothesis

In this model the enzyme molecule changes shape as the substrate molecules gets close. The change in shape is 'induced' by the approaching substrate molecule. This more sophisticated model relies on the fact that molecules are flexible because single covalent bonds are free to rotate.

Continue

 Systematic Anatomicum
                            (
Regional Anatomicum )
Anatomi yang menguraikan struktur yang menyusun system organ di masing-masing regio ( bagian ) tubuh manusia serta  proyeksi  nya terhadap  struktur  region lain.

Pembagian Regio Tubuh Manusia
Secara garis besar tubuh manusia terbagi dalam  7 (tujuh)  region dan masing-masing dibagi lagi dalam subs region yaitu :
1.       Regio Capitis, Capitis ( = kepala )  terdiri dari beberapa Subs- Regio a.l :
 a. Anterior ( Facei ) :
                ~  Regio frontalis
                ~  Regio Orbitalis, infraorbitalis,Nasalis
                ~  Regio Zygomaticum, Buccalis
                ~  Regio Oralis
                ~  Regio Mentalis
  b. Lateralis :
           ~  Regio Temporalis, Parietalis
  c. Posterior :
          ~ Occipitalis     

2.       Regio Colli  terdiri dari beberapa subs regio :
a. Regio Cervicalis Anterior :
          ~   Submentale
          ~   Submandibulare   
          ~   Caroticum
          ~   Omotracheale
b.   Regio Sternocleidomastoideus
c.   Regio Cervicalis Lateralis :
          ~   Cervicalis Lateralis
          ~   Omoclaviculare ( Fossa Supraclaviculare )
d.   Regio cervicalis Posterior 
3.       Regio Thorax terdiri atas beberapa subsregio. a.l :
a. Anterior :
      ~ Regio Pectoralis
       ~ Regio Parasternalis
       ~ Regio Mammaria
       ~ Regio Inframammaria
b. Lateralis :
        ~ Regio Axillaris
       c. Posterior :
      ~ Regio Supra & Infra scapularis
       ~ Regio Scapularis
       ~ Regio Vertebralis pars Thoracica
4.       Regio Abdomen terdiri dari beberapa subs region a.l. :
a. Anterior :
       ~ Regio Hypochondriaca Dextra & Sinistra
       ~ Regio Epigastricum
       ~ Regio Periumbilicalis
       ~ Regio Umbilicalis

b. Posterior :
       ~ Regio Lumbalis Dextra & Sinistra
       ~ Regio Vertebralis Pars Abdominalis

5.       Regio  Pelvic  terdiri atas beberapa subsregio a.l :
a. Anterior :
       ~ Regio Hypogastricum
       ~ Regio Pubogenitale
       ~ Regio Inguinale
       b. Posterior :
       ~ Regio Glutealis
       ~ Regio Sacralis
       ~ Regio Analis

6.       Regio Extremitas Superior  terdiri atas beberapa subsegio a.l :
a. Regio Clavipectoralis
b. Regio Deltoideus
c. Regio Brachii Anterior
d. Regio Brachii Lateralis
e. Regio Brachii Medialis
f. Regio Cubitalis Anterior & Posterior
 g. Regio Antebrachii Volaris  
h. Regio Antebrachii Dorsalis
 i. Regio Carpalis Anterior & Dorsalis
 j. Regio Palmaris & Dorsum Manus

7.       Regio Extremitas Inferior  terdiri ats beberapa subs region a.l :
a.       Regio  Femoralis Anterior  & Posterior
b.      Regio  Genu Anterior & Posterior
c.       Regio  Cruris :
       ~ Regio Tibialis Anterior & Posterior
       ~ Regio Pes ( Pedis ) :
                           - Reg. Malleolaris Lateral & Medial
                           - Reg. Calcaneus
                           - Reg. Dorsalis Pedis
                           - Reg. Plantaris Pedis .

Arah gerakan
A.      Axis Rotasio  pada bidang sagital  akan menghasilkan gerakkan :
1.                Anteversio ( Flexio )       : gerakan extremitas tubuh  flexi kearah anterior
2.                Retroversio (Extensio ) : gerakan extremitas tubuh flexi kearah posterior
3.                Abductio                          : gerakan extremitas tubuh kearah lateral ( menjauh )  dari  linea mediana
4.                Adductio                          : gerakan extremitas tubuh kearah medial ( mendekati ) linea mediana
5.                Pronatio                           : gerakan extremitas tubuh memutar shg palmar manus menghadap ke bumi
6.                Supinatio                         : gerakan extermitas tubuh memutar sehingga dorsum manus menghadap ke
                                                                Bumi
B.      Axis rotasio pada bidang longitudinal menghasilkan gerakan :
1.                Rotasio eksterna            : gerakan extremitas tubuh berputar kea rah lateral ( keluar ) tubuh
2.                Rotasio interna              : gerakan extremitas tubuh berputar kearah medial ( kedalam ) tubuh
C.      Axis rotasio pada bidang transversal menghasilkan gerakan :
1.                Ekstensio                         : gerakan extremitas tubuh membentuk sudut 180 0 (meluruskan sendi )

2.                Fleksi                                : gerakan extremitas tubuh membentuk sudut 90 0 ( membengkokkan sendi )